Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Cell Biosci ; 14(1): 28, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395975

RESUMO

BACKGROUND: PRAME constitutes one of the largest multi-copy gene families in Eutherians, encoding cancer-testis antigens (CTAs) with leucine-rich repeats (LRR) domains, highly expressed in cancer cells and gametogenic germ cells. This study aims to elucidate genetic interactions between two members, Pramex1 and Pramel1, in the mouse Prame family during gametogenesis using a gene knockout approach. RESULT: Single-gene knockout (sKO) of either Pramex1 or Pramel1 resulted in approximately 7% of abnormal seminiferous tubules, characterized by a Sertoli-cell only (SCO) phenotype, impacting sperm count and fecundity significantly. Remarkably, sKO female mice displayed normal reproductive functions. In contrast, Pramex1/Pramel1 double knockout (dKO) mice exhibited reduced fecundity in both sexes. In dKO females, ovarian primary follicle count decreased by 50% compared to sKO and WT mice, correlating with a 50% fecundity decrease. This suggested compensatory roles during oogenesis in Pramex1 or Pramel1 sKO females. Conversely, dKO males showed an 18% frequency of SCO tubules, increased apoptotic germ cells, and decreased undifferentiated spermatogonia compared to sKO and WT testes. Western blot analysis with PRAMEX1- or PRAMEL1-specific antibodies on sKO testes revealed compensatory upregulation of each protein (30-50%) in response to the other gene's deletion. Double KO males exhibited more severe defects in sperm count and litter size, surpassing Pramex1 and Pramel1 sKO accumulative effects, indicating a synergistic enhancement interaction during spermatogenesis. Additional experiments administering trans-retinoic acid (RA) and its inhibitor (WIN18,446) in sKO, dKO, and WT mice suggested that PRAMEX1 and PRAMEL1 synergistically repress the RA signaling pathway during spermatogenesis. CONCLUSION: Data from sKO and dKO mice unveil a synergistic interaction via the RA signaling pathway between Pramex1 and Pramel1 genes during gametogenesis. This discovery sets the stage for investigating interactions among other members within the Prame family, advancing our understanding of multi-copy gene families involved in germ cell formation and function.

2.
Exp Gerontol ; 186: 112359, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184267

RESUMO

Aging is a gradual process of natural change that occurs after reaching sexual maturity. It is also a known risk factor for many chronic diseases. Recent research has shown that senolytics can extend the lifespans and health spans of model organisms, and they have also been demonstrated effective in treating age-related diseases. In this study, we conducted a high-throughput screening of 156 drugs that targeted the PI3K/AKT/mTOR pathway to identify potential senolytic medications. Among these drugs, PF-04691502 was selected for further investigation to understand its molecular mechanism of action. Our findings indicate that PF-04691502, a dual inhibitor of PI3K/AKT and mTOR, specifically eliminates senescent cells. It reduces the expression levels of key markers of cellular senescence, such as SA-ß-Gal, senescence-associated secretory phenotypes (SASPs) and p16INK4a. Additionally, PF-04691502 inhibits the phosphorylation of S6K and AKT, leading to the apoptosis of senescent cells. These results suggest that PF-04691502 holds promise as a new senolytic drug. This paper provides important insights into the potential application of PF-04691502 in the study of cell senescence.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Piridonas , Pirimidinas , Senoterapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Senescência Celular , Serina-Treonina Quinases TOR/metabolismo
3.
Genomics ; 116(1): 110751, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38052259

RESUMO

Ageing is an evolutionarily conserved and irreversible biological process in different species. Numerous studies have reported that taking medicine is an effective approach to slow ageing. Lemon extract (LE) is a natural extract of lemon fruit that contains a variety of bioactive phytochemicals. Various forms of LE have been shown to play a role in anti-ageing and improving ageing-related diseases. However, studies on the molecular mechanism of LE in Drosophila ageing have not been reported. In this study, we found that 0.05 g/L LE could significantly extend Drosophila lifespan and greatly improve antioxidative and anti-heat stress abilities. Furthermore, transcriptome and metabolome analyses of 10 d flies between the LE-fed and control groups suggested that the differentially expressed gene ppo1 (Prophenoloxidase 1) and metabolite L-DOPA (Levodopa) were co-enriched in the tyrosine metabolism pathway. Overall, our results indicate that affecting metabolism was the main reason for LE extending Drosophila lifespan.


Assuntos
Drosophila , Longevidade , Animais , Drosophila/genética , Longevidade/genética , Drosophila melanogaster/genética , Transcriptoma , Perfilação da Expressão Gênica , Extratos Vegetais/farmacologia
4.
CNS Neurosci Ther ; 30(4): e14499, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37864389

RESUMO

BACKGROUND: Neurodegenerative disease is a collective term for a category of diseases that are caused by neuronal dysfunction, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Circular RNAs (circRNAs) are a class of non-coding RNAs without the 3' cap and 5' poly(A) and are linked by covalent bonds. CircRNAs are highly expressed in brain neurons and can regulate the pathological process of neurodegenerative diseases by affecting the levels of various deposition proteins. AIMS: This review is aiming to suggest that the majority of circRNAs influence neurodegenerative pathologies mainly by affecting the abnormal deposition of proteins in neurodegenerative diseases. METHODS: We systematically summarized the pathological features of neurodegenerative diseases and the regulatory mechanisms of circRNAs in various types of neurodegenerative diseases. RESULTS: Neurodegenerative disease main features include intercellular ubiquitin-proteasome system abnormalities, changes in cytoskeletal proteins, and the continuous deposition of insoluble protein fragments and inclusion bodies in the cytoplasm or nucleus, resulting in impairment of the normal physiological processes of the neuronal system. CircRNAs have multiple mechanisms, such as acting as microRNA sponges, binding to proteins, and regulating transcription. CircRNAs, which are highly stable molecules, are expected to be potential biomarkers for the pathological detection of neurodegenerative diseases such as AD and PD. CONCLUSIONS: In this review, we describe the regulatory roles and mechanisms of circRNAs in neurodegenerative diseases and aim to employ circRNAs as biomarkers for the diagnosis and treatment of neurodegenerative diseases.


Assuntos
Doença de Alzheimer , MicroRNAs , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/genética , RNA Circular/metabolismo , MicroRNAs/genética , Doença de Alzheimer/genética , Biomarcadores
5.
J Biol Chem ; 299(12): 105414, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918806

RESUMO

The proteins that coordinate the complex transcriptional networks of aging have not been completely documented. Protein 14-3-3zeta is an adaptor protein that coordinates signaling and transcription factor networks, but its function in aging is not fully understood. Here, we showed that the protein expression of 14-3-3zeta gradually increased during aging. High levels of 14-3-3zeta led to shortened lifespan and imbalance of intestinal immune homeostasis in Drosophila, but the decrease in 14-3-3zeta protein levels by RNAi was able to significantly promote the longevity and intestinal immune homeostasis of fruit flies. Importantly, we demonstrate that adult-onset administration of TIC10, a compound that reduces the aging-related AKT and extracellular signal-regulated kinase (ERK) signaling pathways, rescues the shortened lifespan of 14-3-3zeta-overexpressing flies. This finding suggests that 14-3-3zeta plays a critical role in regulating the aging process. Our study elucidates the role of 14-3-3zeta in natural aging and provides the rationale for subsequent 14-3-3zeta-based antiaging research.


Assuntos
Proteínas 14-3-3 , Envelhecimento , Proteínas de Drosophila , Drosophila melanogaster , Intestinos , Animais , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Envelhecimento/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/imunologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Longevidade , Transdução de Sinais , Intestinos/imunologia
6.
Development ; 150(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37781892

RESUMO

Spermatogenesis begins when cell fate-committed prospermatogonia migrate to the basement membrane and initiate spermatogenesis in response to retinoic acid (RA) in the neonatal testis. The underlying cellular and molecular mechanisms in this process are not fully understood. Here, we report findings on the involvement of a cancer/testis antigen, PRAMEL1, in the initiation and maintenance of spermatogenesis. By analyzing mouse models with either global or conditional Pramel1 inactivation, we found that PRAMEL1 regulates the RA responsiveness of the subtypes of prospermatogonia in the neonatal testis, and affects their homing process during the initiation of spermatogenesis. Pramel1 deficiency led to increased fecundity in juvenile males and decreased fecundity in mature males. In addition, Pramel1 deficiency resulted in a regional Sertoli cell-only phenotype during the first round of spermatogenesis, which was rescued by administration of the RA inhibitor WIN18,446, suggesting that PRAMEL1 functions as an inhibitor of RA signaling in germ cells. Overall, our findings suggest that PRAMEL1 fine-tunes RA signaling, playing a crucial role in the proper establishment of the first and subsequent rounds of spermatogenesis.


Assuntos
Espermatogênese , Tretinoína , Masculino , Camundongos , Animais , Tretinoína/farmacologia , Tretinoína/metabolismo , Espermatogênese/genética , Espermatogônias/metabolismo , Testículo/metabolismo , Transdução de Sinais , Células de Sertoli/metabolismo
7.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047149

RESUMO

tRNA-derived small RNAs (tsRNAs) are derived from tRNA and include tRNA halves (tiRNAs) and tRNA fragments (tRFs). tsRNAs have been implicated in a variety of important biological functions, such as cell growth, transcriptional regulation, and apoptosis. Emerging evidence has shown that Ago1-guided and Ago2-guided tsRNAs are expressed at 3 and 30 days in Drosophila and that tRF biogenesis in fruit flies affects tRNA processing and tRNA methylation. However, a wide analysis of tsRNA patterns in different ages of Drosophila have not been reported via the small RNA sequencing method. In the present study, tsRNAs of young (7 days) and old (42 days) Drosophila were sequenced and their expression characteristics were analysed. Then, a specific tRF (named tRF-Trp-CCA-014) was determined and was found to be conserved in fruit flies, mice, and humans. The expression patterns of tRF-Trp-CCA-014 in different tissues and stages of fruit flies and mice, and mouse NIH/3T3 cells were detected. Furthermore, mouse embryonic fibroblast NIH/3T3 cells were used as a model to analyse the function and targets of tRF-Trp-CCA-014. The RNA-seq data of six groups (Mimics, Mimic NC, Inhibitors, Inhibitor NC, Aging (adriamycin), and Control (Normal)) in mouse NIH3T3 cells were analysed. The results showed that the number of tsRNAs at 42 days (417) was more than at 7 days (288); thus, it was enriched with age. tRFs-1 were the most enriched, followed by 5'-tRFs and 3'-tRFs. Twenty-one differentially expressed tsRNAs were identified between 7 days and 42 days. Then, the conserved tRF tRF-Trp-CCA-014 was identified and found to accumulate in aged fruit flies and aged mouse NIH3T3 cells. RNA-seq data showed that most differentially expressed genes were involved in the immune system, cancer: overview, and signal translation. Furthermore, tRF-Trp-CCA-014 was found to bind to the 3'UTR of H3C4 in a dual-luciferase reporter gene assay. tRF-Trp-CCA-014 and H3C4 were detected in the cytoplasm of aged NIH3T3 cells by RNA in situ hybridization. These results suggest that the H3C4 gene is the target of tRF-Trp-CCA-014. This study will advance the current understanding of tRF roles and their implication in Drosophila and mouse studies.


Assuntos
Proteínas de Drosophila , Drosophila , Humanos , Animais , Camundongos , Idoso , Drosophila/genética , Drosophila/metabolismo , Células NIH 3T3 , Fibroblastos/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Regulação da Expressão Gênica , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Argonautas/genética
8.
Nutrients ; 15(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37111059

RESUMO

Nutrition during the developmental stages has long-term effects on adult physiology, disease and lifespan, and is termed nutritional programming. However, the underlying molecular mechanisms of nutritional programming are not yet well understood. In this study, we showed that developmental diets could regulate the lifespan of adult Drosophila in a way that interacts with various adult diets during development and adulthood. Importantly, we demonstrated that a developmental low-yeast diet (0.2SY) extended both the health span and lifespan of male flies under nutrient-replete conditions in adulthood through nutritional programming. Males with a low-yeast diets during developmental stages had a better resistance to starvation and lessened decline of climbing ability with age in adulthood. Critically, we revealed that the activity of the Drosophila transcription factor FOXO (dFOXO) was upregulated in adult males under developmental low-nutrient conditions. The knockdown of dFOXO, with both ubiquitous and fat-body-specific patterns, can completely abolish the lifespan-extending effect from the larval low-yeast diet. Ultimately, we identify that the developmental diet achieved the nutritional programming of the lifespan of adult males by modulating the activity of dFOXO in Drosophila. Together, these results provide molecular evidence that the nutrition in the early life of animals could program the health of their later life and their longevity.


Assuntos
Proteínas de Drosophila , Drosophila , Masculino , Animais , Longevidade/fisiologia , Drosophila melanogaster/fisiologia , Proteínas de Drosophila/genética , Larva , Saccharomyces cerevisiae , Fatores de Transcrição Forkhead/genética , Dieta , Nutrientes
9.
Front Genet ; 14: 1096902, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926584

RESUMO

As Drosophila is an extensively used genetic model system, understanding of its regulatory networks has great significance in revealing the genetic mechanisms of ageing and human diseases. Competing endogenous RNA (ceRNA)-mediated regulation is an important mechanism by which circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) regulate ageing and age-related diseases. However, extensive analyses of the multiomics (circRNA/miRNA/mRNA and lncRNA/miRNA/mRNA) characteristics of adult Drosophila during ageing have not been reported. Here, differentially expressed circRNAs and microRNAs (miRNAs) between 7 and 42-day-old flies were screened and identified. Then, the differentially expressed mRNAs, circRNAs, miRNAs, and lncRNAs between the 7- and 42-day old flies were analysed to identify age-related circRNA/miRNA/mRNA and lncRNA/miRNA/mRNA networks in ageing Drosophila. Several key ceRNA networks were identified, such as the dme_circ_0009500/dme_miR-289-5p/CG31064, dme_circ_0009500/dme_miR-289-5p/frizzled, dme_circ_0009500/dme_miR-985-3p/Abl, and XLOC_027736/dme_miR-985-3p/Abl XLOC_189909/dme_miR-985-3p/Abl networks. Furthermore, real-time quantitative PCR (qPCR) was used to verify the expression level of those genes. Those results suggest that the discovery of these ceRNA networks in ageing adult Drosophila provide new information for research on human ageing and age-related diseases.

10.
Biochem Biophys Res Commun ; 655: 104-109, 2023 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-36934585

RESUMO

INTRODUCTION: Papillary Thyroid Cancer (PTC) represents a commonly encountered type of thyroid malignancy whose occurrence and development is influenced by long non-coding RNA (LncRNA). A novel lncRNA (LncRNA AK023507), known to have tumor suppressive functions, was shown to prevent breast cancer cells from proliferating and metastasizing, but its mechanism in PTC is unclear. METHODS: Using PTC tissues and cell lines, the expression of LncRNA AK023507 was investigated by quantitative Real-time Polymerase Chain Reaction (qRT-PCR). The effects of knockdown or overexpression of LncRNA AK023507 on cell growth and movement were investigated through various cell experiments in vitro. The presence of important functional proteins was determined by Western blotting, with the recovery experiment used for verification. RESULTS: LncRNA AK023507 was found to have low expression in both the PTC cell lines and tissue samples. Knockdown of LncRNA AK023507 in PTC cells significantly promoted cell proliferation, migration, and invasion, while overexpression of LncRNA AK023507 resulted in the opposite effects. Furthermore, LncRNA AK023507 could regulate the expression of ß-catenin/Wnt signaling pathway as confirmed by recovery experiment. CONCLUSION: By acting through the ß-catenin/Wnt signaling pathway, LncRNA AK023507 prevented PTC cells from proliferating and metastasizing. These novel findings indicate that LncRNA AK023507 could be of prognostic and diagnostic value as a potential biomarker of PTC.


Assuntos
Carcinoma Papilar , RNA Longo não Codificante , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , RNA Longo não Codificante/genética , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma Papilar/patologia , Linhagem Celular Tumoral , Neoplasias da Glândula Tireoide/patologia , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
11.
Genes (Basel) ; 13(11)2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36360325

RESUMO

Species of the genus Oreolalax displayed crucial morphological characteristics of vertebrates transitioning from aquatic to terrestrial habitats; thus, they can be regarded as a representative vertebrate genus for this landing phenomenon. But the present phylogenetic status of Oreolalax omeimontis has been controversial with morphological and molecular approaches, and specific gene rearrangements were discovered in all six published Oreolalax mitogenomes, which are rarely observed in Archaeobatrachia. Therefore, this study determined the complete mitogenome of O. omeimontis with the aim of identifying its precise phylogenetic position and novel gene arrangement in Archaeobatrachia. Phylogenetic analysis with Bayesian inference and maximum likelihood indicates O. omeimontis is a sister group to O. lichuanensis, which is consistent with previous phylogenetic analysis based on morphological characteristics, but contrasts with other studies using multiple gene fragments. Moreover, although the duplication of trnM occurred in all seven Oreolalax species, the translocation of trnQ and trnM occurred differently in O. omeimontis to the other six, and this unique rearrangement would happen after the speciation of O. omeimontis. In general, this study sheds new light on the phylogenetic relationships and gene rearrangements of Archaeobatrachia.


Assuntos
Genoma Mitocondrial , Animais , Ordem dos Genes , Filogenia , Teorema de Bayes , Anuros/genética
12.
Front Microbiol ; 13: 941261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238588

RESUMO

Slow lorises are small arboreal and nocturnal primates. Due to the illegal trade, a large number of slow lorises were confiscated into wildlife sanctuaries or rescue centers. The re-release has been considered a preferable approach for alleviating the captive pressure, but inappropriate and long-term confinement make it difficult to achieve this goal. In this study, we investigated and compared the fecal and oral microbiome of Bengal slow lorises (Nycticebus bengalensis) under long-term captivity (LC) and short-term captivity (SC) groups based on 16s rRNA high-throughput gene sequencing. The oral microbiome displayed higher Chao1 richness but lower Shannon and Simpson indices than the fecal microbiome. The Bengal slow lorises under long-term captivity had abundant pathogenic genera in both gut and oral microbiomes, such as Desulfovibrio, Actinomyces, Capnocytophaga, Neisseria, and Fusobacterium, while some specific bacterial taxa associated with intestinal balance were more enriched in the SC group. Due to the plant gum scarcity in the diet, both groups had a low abundance of Bifidobacterium. Function profile prediction indicated that the LC group was enriched with genetic information processing and metabolism pathways due to the stable food intake. The increased membrane transport and xenobiotic metabolism and degradation functions in the SC group could be explained by the function of the host microbiome in facilitating adaptation to changing environments and diets. The results demonstrated that the oral microbiome had the potential to be used as a regular surveillance tool. Also, current captive management should be improved to ensure reintroduction success.

13.
Animals (Basel) ; 12(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139309

RESUMO

New developments in sequencing technology and nucleotide analysis have allowed us to make great advances in reconstructing anuran phylogeny. As a clade of representative amphibians that have radiated from aquatic to arboreal habitats, our understanding of the systematic status and molecular biology of rhacophorid tree frogs is still limited. We determined two new mitogenomes for the genus Polypedates (Rhacophoridae): P. impresus and P. mutus. We conducted comparative and phylogenetic analyses using our data and seven other rhacophorid mitogenomes. The mitogenomes of the genera Polypedates, Buergeria, and Zhangixalus were almost identical, except that the ATP8 gene in Polypedates had become a non-coding region; Buergeria maintained the legacy "LTPF" tRNA gene cluster compared to the novel "TLPF" order in the other two genera; and B. buergeri and Z. dennysi had no control region (CR) duplication. The resulting phylogenetic relationship supporting the above gene rearrangement pathway suggested parallel evolution of ATP8 gene loss of function (LoF) in Polypedates and CR duplication with concerted evolution of paralogous CRs in rhacophorids. Finally, conflicting topologies in the phylograms of 185 species reflected the advantages of phylogenetic analyses using multiple loci.

14.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142352

RESUMO

Circular RNAs (circRNAs) are a class of covalently circular noncoding RNAs that have been extensively studied in recent years. Aging is a process related to functional decline that is regulated by signal transduction. An increasing number of studies suggest that circRNAs can regulate aging and multiple age-related diseases through their involvement in age-related signaling pathways. CircRNAs perform several biological functions, such as acting as miRNA sponges, directly interacting with proteins, and regulating transcription and translation to proteins or peptides. Herein, we summarize research progress on the biological functions of circRNAs in seven main age-related signaling pathways, namely, the insulin-insulin-like, PI3K-AKT, mTOR, AMPK, FOXO, p53, and NF-κB signaling pathways. In these pathways, circRNAs mainly function as miRNA sponges. In this review, we suggest that circRNAs are widely involved in the regulation of the main age-related pathways and are potential biomarkers for aging and age-related diseases.


Assuntos
Insulinas , MicroRNAs , Proteínas Quinases Ativadas por AMP/metabolismo , Insulinas/metabolismo , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Circular/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53
15.
Front Pharmacol ; 13: 924081, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860029

RESUMO

Glutamine is a conditionally essential amino acid involved in energy production and redox homeostasis. Aging is commonly characterized by energy generation reduction and redox homeostasis dysfunction. Various aging-related diseases have been reported to be accompanied by glutamine exhaustion. Glutamine supplementation has been used as a nutritional therapy for patients and the elderly, although the mechanism by which glutamine availability affects aging remains elusive. Here, we show that chronic glutamine deprivation induces senescence in fibroblasts and aging in Drosophila melanogaster, while glutamine supplementation protects against oxidative stress-induced cellular senescence and rescues the D-galactose-prompted progeria phenotype in mice. Intriguingly, we found that long-term glutamine deprivation activates the Akt-mTOR pathway, together with the suppression of autolysosome function. However, the inhibition of the Akt-mTOR pathway effectively rescued the autophagy impairment and cellular senescence caused by glutamine deprivation. Collectively, our study demonstrates a novel interplay between glutamine availability and the aging process. Mechanistically, long-term glutamine deprivation could evoke mammalian target of rapamycin (mTOR) pathway activation and autophagy impairment. These findings provide new insights into the connection between glutamine availability and the aging process.

16.
Proc Natl Acad Sci U S A ; 119(30): e2201168119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858425

RESUMO

Mitochondrial remodeling during the peri-implantation stage is the hallmark event essential for normal embryogenesis. Among the changes, enhanced oxidative phosphorylation is critical for supporting high energy demands of postimplantation embryos, but increases mitochondrial oxidative stress, which in turn threatens mitochondrial DNA (mtDNA) stability. However, how mitochondria protect their own histone-lacking mtDNA, during this stage remains unclear. Concurrently, the mitochondrial genome gain DNA methylation by this stage. Its spatiotemporal coincidence with enhanced mitochondrial stress led us to ask if mtDNA methylation has a role in maintaining mitochondrial genome stability. Herein, we report that mitochondrial genome undergoes de novo mtDNA methylation that can protect mtDNA against enhanced oxidative damage during the peri-implantation window. Mitochondrial genome gains extensive mtDNA methylation during transition from blastocysts to postimplantation embryos, thus establishing relatively hypermethylated mtDNA from hypomethylated state in blastocysts. Mechanistic study revealed that DNA methyltransferase 3A (DNMT3A) and DNMT3B enter mitochondria during this process and bind to mtDNA, via their unique mitochondrial targeting sequences. Importantly, loss- and gain-of-function analyses indicated that DNMT3A and DNMT3B are responsible for catalyzing de novo mtDNA methylation, in a synergistic manner. Finally, we proved, in vivo and in vitro, that increased mtDNA methylation functions to protect mitochondrial genome against mtDNA damage induced by increased mitochondrial oxidative stress. Together, we reveal mtDNA methylation dynamics and its underlying mechanism during the critical developmental window. We also provide the functional link between mitochondrial epigenetic remodeling and metabolic changes, which reveals a role for nuclear-mitochondrial crosstalk in establishing mitoepigenetics and maintaining mitochondrial homeostasis.


Assuntos
Metilação de DNA , DNA Mitocondrial , Implantação do Embrião , Genoma Mitocondrial , Estresse Oxidativo , Animais , Blastocisto/enzimologia , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A/genética , DNA Metiltransferase 3A/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Implantação do Embrião/genética , Mutação com Ganho de Função , Mutação com Perda de Função , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Estresse Oxidativo/genética , DNA Metiltransferase 3B
17.
Artigo em Inglês | MEDLINE | ID: mdl-35845578

RESUMO

Objective: To observe the effects of Asini Corii Colla, turtle carapace glue, and other drugs on the intestinal flora of nude mice with uterine fibroids model, so as to provide evidence for the clinical application of drugs. Methods: Set up five groups: blank control group, turtle carapace glue group, turtle carapace glue and ejiao 4 : 1 mixed group, turtle carapace glue and ejiao 1 : 1 mixed group, and turtle shell glue and Salvia miltiorrhiza (danshen) 1 : 1 mixed group. Then, the model nude mice were fed ejiao, turtle carapace glue, and other corresponding drugs. Before administration, 2 weeks after administration, and 4 weeks after administration, the feces of the model nude mice were taken respectively, subpacked into labeled cryotubes, and stored at -80°C. All samples were sent for gene sequencing after completion. The differences in gut microbiota and abundance in different groups were compared by 16SrRNA segment sequencing. Results: ① There were differences in flora composition and a relative abundance among the groups, but the strains with a high relative abundance were Bacteroides, Firmicutes, and Proteobacteria; ② there were significant differences in the community structure and composition of intestinal flora between nude mice treated for 4 weeks and those not treated (p < 0.05); ③ after 4 weeks of administration, the relative abundance of Bacteroidetes in each group was higher than that before administration, and the relative abundance of Firmicutes decreased. Conclusion: Asini Corii Colla, turtle carapace glue, and other drugs with different compatibility ratios can change the composition of intestinal flora in nude mice with uterine fibroids to a certain extent; the decrease in the relative abundance of Firmicutes and the increase in the relative abundance of Bacteroidetes were important structural changes of intestinal flora in nude mice at 4 weeks after administration.

19.
Mech Ageing Dev ; 204: 111673, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35398002

RESUMO

Gut homeostasis is a dynamically balanced state to maintain intestinal health. Vacuolar ATPases (V-ATPases) are multi-subunit proton pumps that were driven by ATP hydrolysis. Several subunits of V-ATPases may be involved in the maintenance of intestinal pH and gut homeostasis in Drosophila. However, the specific role of each subunit in this process remains to be elucidated. Here, we knocked down the Drosophila gene VhaAC39-1 encoding the V0d1 subunit of V-ATPases to assess its function in gut homeostasis. Knockdown of VhaAC39-1 resulted in the loss of midgut acidity, the increase of the number of gut microbiota and the impairment of intestinal epithelial integrity in flies. The knockdown of VhaAC39-1 led to the hyperproliferation of intestinal stem cells, increasing the number of enteroendocrine cells, and activated IMD signaling pathway and JAK-STAT signaling pathway, inducing intestinal immune response of Drosophila. In addition, knockdown of VhaAC39-1 caused the disturbance of many physiological indicators such as food intake, triglyceride level and fecundity of flies, which ultimately led to the shortening of the life span of Drosophila. These results shed light on the gut homeostasis mechanisms which would help to identify interventions to promote healthy aging.


Assuntos
Proteínas de Drosophila , Drosophila , Adenosina Trifosfatases/metabolismo , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Homeostase/fisiologia , Células-Tronco/metabolismo
20.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408967

RESUMO

Iron is a trace metal element necessary to maintain life and is also involved in a variety of biological processes. Aging refers to the natural life process in which the physiological functions of the various systems, organs, and tissues decline, affected by genetic and environmental factors. Therefore, it is imperative to investigate the relationship between iron metabolism and aging-related diseases, including neurodegenerative diseases. During aging, the accumulation of nonheme iron destroys the stability of the intracellular environment. The destruction of iron homeostasis can induce cell damage by producing hydroxyl free radicals, leading to mitochondrial dysfunction, brain aging, and even organismal aging. In this review, we have briefly summarized the role of the metabolic process of iron in the body, then discussed recent developments of iron metabolism in aging and age-related neurodegenerative diseases, and finally, explored some iron chelators as treatment strategies for those disorders. Understanding the roles of iron metabolism in aging and neurodegenerative diseases will fill the knowledge gap in the field. This review could provide new insights into the research on iron metabolism and age-related neurodegenerative diseases.


Assuntos
Envelhecimento , Doenças Neurodegenerativas , Envelhecimento/metabolismo , Homeostase , Humanos , Ferro/metabolismo , Quelantes de Ferro/farmacologia , Doenças Neurodegenerativas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA